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The Effect of Shear Stresses

on the Carrying Capacity of I-Beamsl

by

Carl-Fredrik A, Leth2

Abstract.

This paper considers the bending of a cantilever I-beam
of a ductile metal, such as mild steel, that is loaded by a
transverse force at the free end. Taking the length of the beam
into account the load carrying capacity can be expressed in terms
of the moment at the built-in end that is in equilibrium with the
maximum transverse force at which collapse of the beam is immi-
nent, owing to the development of regions of plastic {low, The

influence of the length of the beam upon this limit moment is

i
studied in the paper, . k
As the simplest approximation of the limit moment the

fully plastic moment can be taken. From experimental evidence

it is known that sufficiently long beams can support a force
that is in equilibrium with the fully plastic moment. But it is
also observed that for beams that have both a short length and
an I-shaped cross-section, the limit moment may be considerably
less than the fully plastic moment. The aim of the paper is to
obtain theoretical estimatcs of the maximum moment that these
I-beams can develop at the built-in end, assuming that the

material exhibits ideal plasticitys

1. The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35301 with Brown University,

2. Research Assistant, Graduate Division of Applied Mathematics,
Brown University, Providence 12, R, 1.
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At present a complete three-dimensional solution of the
problewn seems to be out of the question. Even for a two-dimen-
sional model of the problem it would be very difficult to obtain
a complete elastic-plastic solution, The 1limit analysis theorems
of Drucker, Prager ancd Greenberg are therefore applied, These
furnish upper and lower bounds for the limit moment. Two approx-
imate lower bounds are obtaincd by constructing two different
admissible stress fields for a two-dimensional model of the
problem, Only the second bound gives estimates of the limit
moment for short beams, but both bounds are applicable to long
becams, For short beams an upper bound 1s obtained from a kine-
matically admissible velocity field, using the appropriate limit
analysis theorem,

The first stress field is based on a natural extension
of the corventional elastic theory of the bending of beams,
mad ifying this in such a way that at loads above the load at
which plastic flow first occurs the yield condition is not
violated anywhere, The second stress field is artificial in the
sense that it 1s unrelated to the stress distribution of an
elastic beam. Nevertheless, it furnishes in a much shorter way
than the first a lower bound for the limit moment, wvalid for
both shert and long beams,

Both stress fields yield values of the limit moment which
tend towards the fully plastic moment for long beams as the ratio
of the beam length to depth is incressed, For short beams the
cecond stress ficld gives a value cf the limit moment which

differs considerably from the fully plastic moment. For this
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reason a velocity field is constructed so that an upper bound
is obtained for short beams. This velocity field is based on
the failure of the short I-beam primarily because of shear in
the web, It is shown by examples that the upper and lover
bounds are very close for short beams,

The theoretical results obtained in this paper are com-
pared with the reported experimental data that are concerned
with the influence of shear stresses, The experiments give a
reasonable confirmation of the theoretical results both for the
value of the limit moment and for the computed critical length

of the beam below which the carrying capacity rapidly decreases,

A, Introduction.

The problem of the elastic-plastic bending of beams is
so complex that at present no rigorous complete solutions have
been found. In this paper is presented an approximate treat-
ment of a cantilever I-beam which carries a transverse force
parallel to the web at the "free" end, Fig. 1, The purpose is
to study the effects of the shear stresses on the carrying
capacity of the beam. These may gain importance because of the
difference in width of the flange and the web,

In the elastic analysis of the general problem of a
beam under end loading an exact solution can be obtained by the
seim-inverse method of Saint-Venant. For commonly used beam
sections, however, this solution is too complicated to be used
in normal enginecring practices Instead an approximate solution
is used that is based upon an assumption, introduced by Je.

Bernoulli, concerning the deformation of the beam, The deflectimn

——
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of the beam is assumed to take place in such a way that points
which initially 1lie in a plane normal tc the center-line after
the deformation also form a plane that is normal to the de-~
flected center-line. This condition together with the equili-
brium equations and Hooke's law yields results that do not ful-
£i11 the compatibility equations, Furthermore if the cross-
section is not rectangular the ccndition of a stress-free
cylindrical surface of the beam is violated. These inconsis-
tencies are generally of minor importance, however, as many
experiments have shown.

In considering the bending of the beam of Fig. 1 beyond
the elastic l1imit, we have formulated a problem that is of
fundamental importance in the theory of limit analysis of struc-
tures, It 1s not appropriate in this paper to discuss the
procedures of limit analysis. Such discussions can be found
e.gs in the book by Van den Broek [l]* and the papcrs by Baker
[2] and Symonds and Neal [3]s It is sufficient to state that
limit analysis of beams and frames is an analysis of failure of
these structures associated with the formation of '"plastic
hinges" in the meubers of the structure. Plastic hinge sections
are defined 4&s those across which rotations of arbitrary magni-
tudes can occur while a constant bending moment, called the
1imit moment, M5, is transmitted. In this paper we discuss the
computation of the hinge moment at the base of a cantilever I-

beam, since this can be regarded as the basic structural element

*  Numbers in square brackets refer to the Biblicgraphy at the

end of the paper,
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in any continucus beam or rigid frame, We shall compare the
limit moment for such a cantilever with the approximation to the
1imit moment that is commonly used in the applications of 1limit
analysis, namely the "fully plastic moment", Mp. This latter
moment is now considered in detail,

Consider first a beam subjected to pure bending. Let
the beam have two planes of symmetry and let the moment act in
onc of them, Fig. 2. Assume the material to follow the perfect-
ly elastic~plastic stress-sc¢rain law, i.e., the stress-strain
diagram in simple tension of Fig. 3+ Moreover let it be assumed
that each fiber is in a state of simple tension or compression,
so that dx is the only non-vanishing stress, The condition that
cross-sections remain plane in the elastic part of the beam then
yields the distribution of stress ovcr the cross-section that is
depicted in Fig. 4. In Fig., 4a the outmost fiber has not reach-
ed the yicld stress, but in 4b the moment has increased so that
the outer part of the cross-section becomes plastic, while the
inner part remains in the elastic state, In Fig. 4c the curva-
ture of the beam has taken such a large value that the clastic
core in the center can be ncglccted and the plastic regions are
considered to cover thc entire cross-section. The bending moment
corrcsponding tc this last state is called the fully plastic
moment

In gencral for a beam having two plancs of symmetry, in
onc of which the load is applied, the fully plastic moment is
given by

Mp = YZp
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where Zp is twice the moment of the cross-section area on one
side of the middle surface, with respect to the transverse axis
of symietry. In thespecial case of an I-beam, the fully plastic
moment can be considered to consist of two parts, namely the

contributions from the flanges and from the web, We then have

where M, = b (2% - ¢2)Y and Moy = bc?Y.if the web and flange
are assumed to be rectangles, Fig. 5,

Note that the stress distributions of Fig. 4 are not an
exact solution cven for a rectangular becam in pure bending, as
was pointed out by Hill [4]; these stresses are not consistent
with continuity of displacements at the clastic-plastic boundary.

In the more general problem of the bending of the becam
in the presence of shear forces, the moment varies along the
beam, and it is nccessary to remove the previous assumption that
T,, 1s zero. Il is shown in the bock of Prager and Hodge (51,
see also Hodge (6]}, that T, , must vanish in the plastic region
that spreads in from the outer fibers. Hence the distribution
of the longitudinal stress, depicted in Fig. 4, remains unchanged
if the other assumptions of the analysis for simple bending are
retained. The depth of the plastic region then varies according
to the distribution of the moment along the became Figure 6 shows
the plastic region in the cantilcver beam loaded with a shear
force at the frce ends As the clastic region must carry the

total shear force,y the shear stresses incrcase in magnitude

wowards the built-in ¢nd at the center of the bcam, Failure by
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ccllapse occurs when the 1limit moment in the presence of shear
is reached at the built-in sections; deflections would then
continue under constant load, if geometry changes are neglected,
with rotations of aruvitrary amounts at the plastic hinge at the
built-in end. In most applications of 1limit analysis the com-
ponent beams are assumed to be sufficiently long with respect

to their depth so that the shear stresses can be neglected in
computing the limit moment. Thus the fully plastic moment is
taken in these cases as a good approximation of the actual 1limit
moment.,

An early paper dealing with the shear stresses at the
section of failure of the beam was written by Stussi [7]. He
considers a beam under the influence of a moment and a shear
force. Assuming that the longitudinal stress follows a general
stress-strain law in simple tension for mild steel and consider-
ing plane cross-sections to remain plane over the entire cross-
section, the distribution of shear stress is obtained with the
help of the equilibrium equation, The fact that the value of
the longitudinal stress at yield is affected by the presence of
these shear stresses is neglected. The shear stress at the
center of the critical cross-section at a specified stage of the
loading is considered to form the condition for the failure of
beam.

A recent investigation of the shear stresses at the most
highly stressed section has been presented by Horne [8]. A
rectangular or an I-shaped cross-scction under the assumption

of plane stress and the Tresca yield condition is treated, At
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failure two different plastic regions appear. One of these
contains the outer fibers of the beam at the built-in £nd where
longitudinal stresses are largej the other plastic reéioh devels
ops at the center of the beam where shear stfesses predominate..
The assumption that plane ¢ross-sections remain plane duriné the
deformation is adopted in thé élastic region, In the plastic
regions account is taken of the é&gquilibrium and yield conditions,
but not of strains, It is not possible in this solution to
satisfy all the matching conditions of thé stresses at the
plastic-elastic boundaries, For the case of I-beams the poss-,
ibility of a violation of the yield condition at the flange-web
junction is nof investigated,

A different viewpoint is presented in a paper by Onat
and Shield [9]s The same problem as in Fig., 1 is treated for a
rectangular cross-section with the assumptions of plastic-rigid
material and plane strain conditions. The exact solution (ful=
filling both stress- and flow-conditions) for the region near
the built-in end is obtained.

In the equ;imental studies of the bendiné of beams
beyond the elastic limit, there are many results showirig that
for long beams the fully plastic moment provides a good approxi-
mation %o the limit moment. A survey of these studies has been

presented by Roderick and Phillips [10]. On the other hand,

relatively few experiments have been made whose aim was to study

the behavior of the beam when shear effects are important.,
Apparently the only extensive tests of this nature are thosé

made by Baker and Roderick [11], Hendry [127], and Johnston,

et o g vh e oy YT = o T SR T M MY e T e T PGS s g T ‘T‘ i N LTS e —— AR

e T e g i Y = At e
e BT AR R -
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Yang and Beedle [13]. The comparison of the results of this

paper vwith these experiments is postponed until after the analy-

sis has been deséribéd.

B. General -conceptse.

Thé analysis in this paper is based upoh the two limit
analysis théorems of Drucker, Prager and Greenberg [ 14} . The
main part-pf the paper is concerned with the first of these
theorems, and we begin by defining the terms .and cencepts that
are used in it.

A yield function © is a positive definite function of
the stress components only, such that plastic flow can occur
when ® = 1, In a stress-free state we have ® = 0 and the elas~
tic range consists of 0 < ®< 1, We then define a gafe state of
stress as a state for which @ < 1 throughout the structure.

On the other hand collapse is defined as the state for which
plastic flow would occur under constant load if the accompanying
changes in the geometry of the structure were disregarded. More=~

over we call a stress system gtatically admissible when it

satisfies the equilibrium equations and is consistent with the
surface tractions on the boundary of the body, The first limit
analysis theorem then states that if a safe statically admissible
state of stress can be found at each stage of loading, collapse
will not occur under the given loading schedu.e., Thus a load

at which a safe statically admissible stress field cah‘be con-

structed is a Jlower bound for the collapse load of a structure.

In the main part of this paper we apply the theorem

stated above to the problem of estimating a lower bound for the

NS

TN = 4 e
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maximum end force that can be applied to a cantilever beam, Fig.
1. As discussed later in this section we find it necessary to
make certain approximations in the construction of safe stati-
cally admissible stress fields four this protlem, Since the
conditions of the theorem are not satisfied exactly, the maximum
loads obtained in our analysis cannot be regarded as true lower
bounds of the collapse load of the problem, However, it is
believed that the nature of the approximations is such that the
results will be of practical usefulness, and will serve as a
guide to further experiments,

As it is part of our purpose to study plastic regions in
the beam we consider stress systems that fulfill the yield con-
dition & < 1, the equilibrium equations, and agree with the
specified surface tractions. We then know that the correspond-
ing lcad either is the truc collapse load or is smaller than
this load. This is true because of the fact that any smaller
load will be in equilibrium with a safe statically admissible
stress-system and therefore cannot be a collapse load., Note
that, when using this theorem, we focus our attentiocn entirely
on the stresscs. This was done also by Horne [8], who dealt
primarily with conditions on fthe stresses. The lower bound
theorem provides a basic justification for this point of view,

We shall hcre use the yield function that was proposed

by von Mises, It has the form (see [5])

= l" 2 2 2
D= = |9 + g + - G0 G = 0 ¢ «
Y2Lx y = Xy y & ozox
2 2
+ ¥ T+ + <1,
o xy 3TVZ 3T%X ]
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Although we have eliminated above all considerations of
compatibility of strains the problem is still so complicated that
further simplifications must be made. Following the method of
the approximate elastic solution, mentioned in the Introduction,
this analysis is made two-dimensional in the X,z plane, so that

Oy T and 6 _ are the only non-vanishing stresscs, Moreover
L

Xz
we assume the stresscs to be independent of the y-coordinate,
This implies that the condition of no surface traction on the
inner sides of the flanges must be violated, The same error
appears in the ajpproximate elastic solution, This cannot, of
course, be taken as a Jjustification of the assumption in the
problem of the plastic bending of the beam., Such justification
must ultimately be found in a more complete theory or by experi-
ments.

Two different strecs fields are constructed in the
following. In the first analysis (Section C) it 1s desirable to
make a further approximation. This consists of assuming the S,
strces to vanishy and it turns out that one of the two equili-
brium equations cannot generally be satisfied in this case. In
the second analysis (Section D) the same assumption is mace, but
for this stress field it is found that a vanishing oz docs
satisfy both equilibrium equations., Hence no appreximation in
this regard is involved in the second type of stress field, As
this second analysis gives quite satisfactory values of the
estimates of the limit momont no attempt is made to consider the

effects of the S, stress in the first analysis.
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The first analysis is built up as a continuation of the
conventional elastic theory of the bending of beams, In this
theory it is known that the most highly stressed points of long
beams are located in the outer fibers at the tuilt-in section,
Hence we assume that plastic regions start at these points and
then spread in through the flange into the web, Fig. 6, At some
stage a new plastic region will form starting from the center
point of the web at the built-in section. 1In this first araly-
sis we eatimate the limit load by the load that corresponds to
the stage w..en the stresses at the center of the beam at the
built-in section just start to produce plastic flow. The present
estimates of limit loads are conservative on this account. The
calculation in the first part of the analysis considers this
case where the plastic regions have the shape indicated in Fig,
6. However, when the yield condition is checked in the elastic
region, we find that a critical point exists at the flange-web
Junction for beams of relatively short length, This suggests
that a second plastic region will occur in the outer portions
of the web, as shown in Fig. 7. The second part of this analysis
considers this case. In the third part, beams of still shorter
lengths are treated, namely the case vhen the second plastic
region extends into a cross-section of the beam that otherwise
would have hecen entirely clastic, This is shown in Fig. S.

At the start of thc second analysis (Section D) a stress
field is constructed which 1s anticipated by the failure of a
very short beam due to shear in the web., It is then Pund possi-

ble tc generalizec this stress field so that becams of arbitrary
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lengths can be treated.

The second type of stress field is both simpler and more
general than the first type, and it will probably provide the
more useful basis for estimating limit moments in the presence
of shear forces. On the other hand the second type of stress
field is quite artificial, whereas the first type is a natural
extension of the well confirmed simple theory of elastic-plastic
bending of beams. In this respect it corresponds to and supple-

ments the analysis of Horne [8)].

Ce Analysis for the first type of stress field.

For the first type of stress field this analysis is

divided into three parts, based in turn on the three configura-

F e

tions of plastic regions shown in Figs. 6 - 8, The analysis will
show that there exist for a given cross-section shape three
decisive lengths {b’ %l andmﬁz which determine the appropriate
configuration.

1. Beams of length so that 4 > 4 1 and £ > &O,

We here consider plastic regions as shown in Fig. 6.
They are bounded by the outer sides of the flanges, by the built-
in section and the curve u(x), In zone BC of the beam the
plastic regions extend into the web, but in zone CF the bounda-
ries of the plastic regions are located in the flange., With the
assumption ¢, = O, the two remaining stresses in the plastic
regions are described by the equilibrium equation and by the

yield condition:

—~——



A11-107 1y

X2 _ ,
ox 32 0 1)

2 2y 1 _ .
(0 + 37,) =Rl (2)

The yield condition (2) 1is identically satisfied if we relate

the stresses to each other through the function a(x,z) in the

following manner.

The equilibrium equation becomes
189 ging - 2a -
V3 5% Sin @ = 22 cosa = O, (3)

The characteristics of this equation are lines along which a 1is

constant, The expression

- 2 2 .. .

together with equation (3) implies that the characteristics are

straight lines with the slope

QP‘
N

L cot a, (4)
3
On the boundary z = a we have 3, = Y”sz = 0 or a(x,a) = O,

The characteristics are therefore lines parallel to the z-axis

and the stresses in the plastic region are given by
6, = ¥y T = O,

In the clastic part of the beam we follow the theory
based upon the Bernoulli assumption. This implies a tensile

stress linear irn z, In the elastic part of zone BC we therefore
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have

(From here on we consider only positive z-values. The quantities
in the beam are either symmetrical or anti-symmetrical around the
middle surface,) The equilibrium equation (1) determines the
shear stress. Using the boundary condition sz(x,u) = 0 we

obtain ut 2
Txz = = 7 (L - &)y

u
where the prime denotes differentiation with respect to x. The
boundary u(x) between the plastic and elastic regions in the zone

BC is determined by the total moment at any cross-section., It

is 5 u2
Px =M. - & M
2 3 :7 W
or
2 M_ - Px
u
5 =37y . (5)
c pw
The cross-section C is determined by us, = ¢ or
M- &
B T (6)
T

and the shear stress in the flange is also given by equation (1)

2
- il Z :
sz_-yg'(l—"?) Y.
u
To find the shear stress in the web we must consider the differ-

enc2 in the width of the beam at the flange-welu juncticn, We
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let the equilibrium condition be satisfied only approximately;
namely we assume that the shear stress has the samec jump at the
flange-web junction as the width of the beam. Hence the boundary

condition for the shear stress in the web is

b 2
Typ(X9) = - 1% %} 1 - Eg) A3
u

The equilibrium equation (1) then gives the shear stress in the

web 2 bg e
1
szz-u_g-[l-%+ (b - 1)(1""0"2)]Y'
u u

As before the plactic-elastic boundary u(x) in zone CF 1s deter-

mined by the total moment at any cross-section, It is

Px = -‘L(a2 - uz)bl + (U2 - c2) % bl

2 3 7
(u - ¢) D 2 ¢ !
+ T bl[c + §(u C)] + § = b(»Y
or 3 > i
u a Pxb u b
= -3[% - =28 ]2 4 2(1 - =) = . (7)
c3 e Mpwbl ¢ bl ©

The cross-section F is determined by Un = a, 1.e4y

2 Pbu

3
a a a b
= -3 [SHS c—=—=-]=2+2(1L -=)=0
03 c2 Mpwbl c bl
oF Iy
*r T 3P (8)

where I is the moment of inertia ot the cross-section
i 3 [bla (bl b)C ] )

In the entirely clastic zone FH the tensile stress is

given by

:
LR



A11-107 17

d =

2
x XZ o

Hio

The equilibrium equaiion (1) again determines the shear stress,

so that
> .2
S (- R ) in the flange

T = 191" in the web,

The validity of the stress-system, obtained above,
depends on two conditicns. First, it is assumed in Fig. 6 that
the plastic regions extend into the web at the built-in section.
Secondly, the yield function is assumed not to exceced unity in
the elastic region. The {irst condition implies ug < ¢, i.e.,
MP } % Mpw

/?/ T e *
> . (9)

For the second condition we feorm the yield function

o = (o 2 k4 3TXZ ;Z

in the different parts of the elastic region. We obtain

d = Z_ + 2 (&_ 2 C2 i = EE 2
BC u2 l—% Mpw) ? ( u2)
= éi 1 2% (RE_)2 (u/e)? - (Z/C)Z )2 in the flange
e e Mow [(u/e)d - 1Jby/b + 1 '
1 - (2/c)2 + [(u/c)2 - 1]ba/b 2
©. =2 . 22 (B2 ( )
CF g2 16 M, [(u/e)3 - 1Iby/b + 1

in the web
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_ _P 2.2 ) a2
f— JU S— + - z<& in t £1:
- x5 [x°z & (a )] n the flange
2
o = 5 [x222 + % (yﬁ_ c2 - 22)2] in the web,
FH 22 M
1Y pW

When we look for possible maxima of ¢ we notice that in the zone |
FH & has its maximum value at the section F., Hence we need only |
to check the zones BC and CF,

In the zone BC it is convenient to consider 22/u2 =t

and 27/16 (Pc/Mpw)2 c2/u? =n as the two independent variables,

Then 5
CDBC(E,I]) = E +f1 (1 - E) .

A maximum appears on the boundaries 9 = nmax and £ =1, At

E =1 we have ¢ = 1, so the critical section is n = Nyax COTTES-

ponding to the smallest possible value of u, i.e., the built-in e
section, The maximum of ¢ at this section appears for z = O,

As mentioned in the previous section we take the load P; as an

estimate of the limit load in this analysis, where Py is deter-

mined by the yield condition at this critical point, Hence we

have
g%.(fli 2 23 =1
6 W) 3=t
pbw up

uy is eliminated by means of equation (5). This gives

— 4

M .' 2 M
e R ROy s - N (10)
PV L° “pw

P.4

o

- .8

9

=
0 Po
%) I V)

D

The yield condition remains to be checked in zone CF.

We find when looking for extreme values that there are no
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stationary points in the flange. On the boundaries of the elas-
tic region in the flange we have on one side the plastic region
and on the other side the junction to the web. Because of the
jump of the shear stresses at this junction the stresses in the
web are more critical., The yield function in the web also has
maximum on the boundaries, i.e.y z = 0O and z = c. At 2 = O we
have
Tw/e)® = 1Toy/0 + 112
u/c /b + 1IN
o) = 27 (EQ_)2 , 1 i
CF ™~ 16 'M ‘ 3 :
pw \J(u/c) 170, /0 + 'S

As u/c > 1 ®CF has maximum for smallest possible u/c, i.e.,
u = c¢, But for this valuc we know from zone BC that the yield
condition is satisfied., Hence we have to check at the flange-

web junction. We have at z = ¢

- 2 2
5 Tiuse)s - l]bl/b N
o = CSo + 2] (PC )2 [
CF 2 16 'M 3 !
u Pw \ r(u/e)’ -~ 1]b7/b + 1/
{ e
Equating ®CF = 1 ylelds the following equation in u/c:
|2
M3 21 + B =3 Pc v Jju__ 4 13
c B M_c\/ 2 (11)
1 pPw v

or

u\6 27 ,pc .2 L _ _ b 3
() - % (Mpw) (1;-) 2(1 b—l-)(%)

2 PC\2 .1_1_2-4. __22:
+ 5 g @ v a -2 =0
W 1
The last equation shows that there are two or zero positive
roots., We can get an approximate solution by considering the

. 2

quantvivy u/c - 1 = e, which is assumed to be a small number as
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compared to unity. The equation becomes

\/5[3_é3 %9— (1 + ) ve + - Ve (3 + 3¢ + g2) = éi .
W

As & 3 \/'3"Pc/Mpw may be of the same order as v@} we get in

approximate form

or

The critical value, wher: yield just starts at one point, corres-

ponds to vanishing of the radical, 1.e.,

—

- ?
Mpw 3 \/ b,

In the cases of I-scctions of particular interest here b/blm/O.l,
so that the assumpticn that e is small as compared to unity is
satisfied,

We now consider tlic beam loaded with the force Pl accord-
ing to equation (10), Then elimination of Pl between (10) and
(13) gives an approximate value of the length of the beam, %1,

for which the two critical points start to yield sinultaneously.

Vie obtuin 2

he)
\_N‘

U1QF

M
2 (..p_
c M

pw

2by (e

H"I
leg
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On the other hand eliminating Pl between the inequality (9),
taken as an equation, and equation (10) gives
L M
23 -, (15)
c Mpw

Hence we have the following two conditions for the validity of

this first part of ihe analysis:

2 2
1.4 L. 7o
t2% M og2%e

It is interesting to compare these two values for standard I-
beams. Table 31 shows that for many common sections &1 > &O.
This shows that the stresses at the flange-web junction play a
decisive role even for relatively long beams,

The influence of the shear stresses upon the limit

moment is expressed by equation (10)., This influence is shown

. . . . e
. h P,4/M lotted as function of < /M /M .
in Fig. 9, where P4/ p is P ction 5 pw/

2. Beams of length so that &l > £,2 &2 and £.Z &O.

We now consider beams that have a length shorter than
&1. We retain the previous estimate of the 1limit load as the
force Pl according to equation (10), The stress field must
therefore be modified so that the yield condition & < 1 is
satisfied everywhere, We introduce second plastic regions in
the web as shown in Fig. 7. These regions are bounded by the
curve v(x) and occupy the zone DE, where we assume, in this
part of the analysis, that the cross-sections D and E are

located between the cross-scctions C and F.
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There is no reason to change the previous stresses 1n
the zones BD and EH of the tesam, The cross-secticns D and E are
determined by equation (11) or approximately by equation (12),
The condition that the cross-section E will be located to the
left of cross-section F 1s given by1%3$ a, By means of equa-

tions (8) and (11) this condition is

54 M -
L 2 \1/;3 'p V3
T 2 c - [x Mpw K ] 2

where

/
b
=28 [
s \'/b Mp'prf°

We also assume, as before, that up < c. The bounds for the

length of the beam for which this part of the analysis applies,

therefore, are
£ z

Ly iy 20 a8
== ==l

£

> =2
= c

Ol
Olge

Now consider zone¢ DE, Both the flange and the web are
partly elastic, partly plastic. 1In the plastic region of the
flange we have as before O = Y, Ty = 0., 1In the plastic region
cf the web we again 1clatc the stresses to each other by
oy = Y cos a(x,z) and T,, = L sin «(x,z). 2f the boundary
condition at the flange-web junction were given, we then could
determine the stresses along the characteristics, Therefore we
cousider a(x,c) = f(x) as a given function and express further
gquantities in terms of it,

In the elastic region of the flange the assumption of

linear variation of Oy and of continulty of ¢, and = across

X Xz
the elastic plastic interface then yie=lds
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¢ =Lu=-2)cosf + 2 - c¢c vy
X u-c

The equilibrium equation (1) together with the boundary condition

Typ (Xyu) = O gives

2
=108 r(u-2z) “ 7

The cther boundary condition

LD
V3 b,

determines the function u(x) to within an arbitrary constant A,

sz(x,c) = sin f

as follows:

X
' D
(u - ¢c)(1 ~cos f)=A+ Vib ! sin £ dx.
b, |
3 1 Jx '§-¥
The boundary condition u = up at cross-scction D determines A ;
b O
so that jo
2b | sin f dx
(up = ¢)(1 ~ cos f(xp)) Jx

u =4c+

= e . (16)
= SlCes V3 b (1 - cos T)

But u is given also at section E. Hence we must impose one
condition on the function f, namely
X

!E—El [(u, ~c)(l-cos f(xm))-(u._- - ) = :\D‘

5% - - g))-(uy c)(1l-cos f(xD,)] = ; sin £ dx.

JXE (17)

This equation can also be derived as the equilibrium equation

of forces in the x direction on the segment at the flange between
D and E.

In the second plastic region in the web the stresses are

given along each characteristic. Hence dy = Y cos f(x) and
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T = JL sin f(x) where the value of x refers to the coordinate

V3
of the characteristic at the flange-web junction, Fig. 1C. As
before, the characteristics are straight lines in this case

making the angle ¢(x) to the z-direction. In view of equation

(W) -
= V3 tan f = tan @, (18)

i
mla
N

It is found convenient to denote the length of the characteris-

tic by g(x) \/i + 2 sin®f(x).

Now consider a "cross-section" of the beam tnat follows
the chnaracteristic in the second plastic region as shown in
Fig. 10, TMue to the slope of the characteristic the center part
of this "cross-section" has a coordinate, denoted by s, that
differs from the coordinate x of the outer part of the "cross-

section", The coordinates are related by

s(x) = x + g(x) \/l + 2 sinzf(x) sin @(x)
= x + V3 g(x) sin f£(x).

The function v is now determined at s by

v[s(x)] = ¢ - g(x) \/1 + 2 sinzf(x) cos ¢(x)
= ¢ - g(x) cos f(x).

Hence the assumptions of continuity and of linear variation of
ives
o, 8l

z cos f(x)

dx[s(x),z] = T - g(x) cos f(xy

Y.
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The equilibrium equation is

og ot
—=
axX

20 b
+
red
N
1
(@

This determines sz together with the boundary condition

\ =
T, [s(x),c - g cos £(x)] = 7; sin £(x).
We obtain
- 12
T =B [-—-—3 sin
2 2 ;
. Q- 2 )g'cos f - cftsin f]'Y.

(¢ - g cos f)2 1 +v3 (g sin f),

Now it remains to determine g(x) in terms of f(x). As
before we set up the equation of total moment, now taken with

respect to the point (s,0). The external moment is given by

equation (10) as

2

_ 8 4s -/ 2 -
Pys = 3 "] Mpw (Y1l + E IT ﬁﬂ— 1),
e pw

The plastic regions of the flanges contribute M,
- 2 2
My = (a” - u )blY.

The elastic regions of the flanges contribute the moment M,
wnich is made up of two parts Mél) and Mé2) arising from the

tensile and shear stresses, respectively

Mél) - % (u - c)[2u + ¢ + (u + 2¢) cos f]blY

Mé2) = - L g sin f[(u - 0)2(1 - cos f)]!blY

V3
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My = {:% (u - c)[2u + ¢ + (u + 2¢c) cos f]

= j% g sin £ [(u - c)2(l - cos f)]'} b1Y°

The plastic regions of the web contribute M3 which also consists

GO

of two parts, M from the two stresses, ¢, and 7

3 3 4 X2z
respectively,
Mél) = (2¢c - g cos f)g cos2f bY
M§2) = 2gc sin2f b
My = (2ge - g2cos3t)bY.

Finally the elastic part of the web contributes Mh

R

My, = % (¢ - g cos f)2 cos f bY. :
The moment equilibrium equaticn then becomes
Ps =M +M, +M +M.
1 1 2 3 L

It is gquadratic in g(x). We therefore obtain

g(x) = A - \/a%(x) - B(x) (19)
where = p.c° VERR®
¢ = 3—é3 ﬁl—— sin £ + [2u + “‘ﬁﬁ“i (u - c)2f']sin2f
A(x) = W 2 (20)
cos3f
P.x - M
f b
302 -!;Tf-mll'— 202 cos £ + 7%(u - c)(u + 2¢)(l - cos £)
B(x) = pv —t
cos3f

(21)

p . N
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To complete the analysis we must write conditions
ensuring continuity of stresses at cross-sections D and E. The
following requirements are imposed on the values of f(x) and

£f'(x) at D and E:

1 Upt
f(x.) = cos £Se)is £V (%) = = (22)
D Up - ) 2
uy \up” - e
uéc
£xp) = cos™t (S )is f‘(xE) = . (232

UE u \/u 2 . ¢2

The previous condition on f(x), (17), now takes the fornm

|
2b

V3 = r(uE - ) (u, - 0)® 4D
=N sin f dx. (2L)
D

u

W E . I

\,XE

Any function f(x) that fulfills these five boundary conditions,
equations (22), (23) and (24), and produces plastic regions of
the type assumed in Fig. 7 will define a statically admissible
system of stresses within the framework of the assumptions we
have made. In the numerical example one such function f(x) is
chosen,

3. Beams of length so that 4, > 4 > %O.

The beams treated in this part have such length and
cross-section dimensions that the plastic region that started
from the outer fiber extends into the web, and so that the second
plastic region extends into the zone FH, see Fig, 8. The length

of the beam 2must therefore fulfill

ey
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2

Q
> 2.

Lo

c

ol

2

One further condition should be mentioned namely the requirement

that the cross-section G does not fall near the free end of the

beam, )
The same siress field as before is used in the zones BF

and GHe The "cross-section" F is given by up = 3, 1.e.,

> Xp
(upy - ¢) o
(a ~ ¢)(1 -~ cos f(xF)) = = + _2b ' sin £ dx, (2%5)
D V3 by
.

The cross-section G is determined by the yield condition in the

web at z = ¢, It is

P2c2 ;
| ) 2 Mor 24 :

1= fxs +d e (E2) ]

370203 gt

SO
b4 / 2.2
6. (1Y Mel2
c J 2~ & (-RL), (26)
P-c M
1 pW

In the zone FG the flange 1s entirely elastic, iLat the
web contains the second plastic region, Fig. 8, The stresses in
the web are determined as before by the function f(x). The
expressions for the stresses in the web remain unchanged, so

that in the plastic region of the web along each characteristic,
Fig, 11

o] = =
x - Ycos £y T,

and in the elastic region of the web
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o z cos T Y
6x "¢ -gcos T
( 2 { 2 - 1 3
Tom = %w{ié sin £ + {1 - Z 2] glcos'f - cfisin f.i .
Y3 (c - g cos T) 1 +/3 (g sin B

In the flange, which is in the elastic state, we let
Oy have linear variation in z and be continuous at the flange-

web junction. Thils gives

(a - 2) cos £ + (z - ¢c)h
s = Y
- a - c

where we denote dx(x,a) = Yh(x)., The function h(x) will be found
in terms of f(x)., The equilibrium equation (1) together with the

boundary condition T, (x,a) = O determines

= a - Z - t i
sz = m [(a + z 2c¢c)h (i z)f' sin f]Y.

The boundary condition for LN at the flange-web junction deter-

mines h(x). We have in the flange

sz(x,c) = % (a - ¢)(h! - £ sin £)Y = —RL_ sin £,
V3 by
*
Henice 2b | sin f dx
h=B-cos f+ = N
V3 by(a - ¢)

The constant B 1s determined from the condition of continuity of

6. at the section G, We obtain

X
Fx
2 2b sin f ax
h=(E+1) /1 - 3(EEF Mpf)2 - cos f + J*o
A T : . @)

' pw V3 by(a - ¢)

Ay e e
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But the tensile stress is also given at the secticn F. This

imposes the following condition on f(x):

V3 by

—5— [(a - )1 - cos—fffr)i

'2 X

P.ec M )

y L "IYM .
PW

i sin f dx. (28)
I
This condition 1s equivalent to equation (17) applying to zone

DE. It also expresses the requirement of the equilibrium of the
forces in the x-direction for the segment of the flange between

T and G,
We now determine the function g(x) by the overall moment
equilibrium equation with respect to the point (s,0), Fig. 11l.

As before, the exterunal moment 1s

)
)

2 M
Ps=§%SM 1+ 26 B L
1 9 pw(l; +ﬁ7M l)s
c 2~ Tpw

The contributions to the moment from stresses in the web are

as given in the previous section, namely

M (2gc - g2cos3f)bY

3

M, = % (c - g cos f)2cos Sl O

The flange coutributes the moment M,, which consists of two
parts, Mél) and M§2), arising from the tensile stresses and the

shear stresses, respectively:
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Mél) % (a - ¢)[(a + 2¢c) cos f + (2a + c)h]blY

1l

(=) B sin f
M3

/3

% (a - ¢)[(a + 28) cos T + (2a + c¢)h

(a - ¢)® (2h + cos f)! by Y

5
+v3 (a - ¢)g sin £(2h + cos f)‘]blY.
As before the moment equilibrium equation
Pls = M2 + M3 * Mh
determines g(x) so that

2

g(x) = A - yA© - B (29)
where = P. o2 b F
c = izri Mlc sin £ + [2a + Jlggjé (a = cfzf:]sin £ K

A(x) = LY - (30)
cos3f !

P.x

302 ﬁ;— - 202cos A %%(a-c)[(a+2c)cos f+(2a+c)h] l

B(x) = 2. . (31)

cos3f

As before, we must check that the stresses are continuous
at the cross-sections F and G. The stresses at section F are
given on both sides of the cross-section in terms of f£(x).

Hence £(x) must be continuous and have a continuous first de-
rivative at Xpe Continuity of the shear stresses at F imposes

!
one more condition, namely u

P 0, 1In terms of f(x) this

conditicon takes the form
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M
2 ¢ pw
fl(x ) . a + C . (-%2)
F \/3 02 Mpf -
At section G the continuity of stresses requires
= 2

v3 P,cM 2M
£(xg) = sin~t ____JL___Eg; FrlE. ) = = =P (33)

2IY M G =

pw Y3c Mpf

Any functicn f(x) that fulfills the four conditions (28), (32)
and (33) and produces stresses of the type assumed in Fig. 8
will, within our assumptions, produce a statically admissible
stress field. Note that the position of section F and the value
of the function f(x) at F are not determined by the stress con-
ditions, These values may be chosen so that the numerical
calculations become as simple as possible, It will be convenient
to assign a value for Xp at the very beginning of the computa-
tion., Thereafter we construct a stress field in the zone FG by
using an f(x) that fulfills the conditions (28), (32) and (33).
We then finish the problem in dealing with the zone DF, i.e.,
we choose an f(x) that fulfills conditions (22), (24) and the
values of f(xF) and f'(xF) that are obtained from zone FG. The
third numerical example in the fcllowing section is computed

according to this scheme,

L, Numerical examples.,

In this section an cutline is shown of the computations
that determine the shape of the plastic regions for three special
cases all applied to an 8 WF 40 beam, The numerical values of
the different quantities are given to as many as six significant

figures, although of course for prac*ical problems such precision

e
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is meaningless. It is nececsary in certain cases to carry this
number of significant figures in order to show some of the prop-
erties of the analysis,

We have chosen in our examples one of the beams listed
in Table 1. This table shows the computed lengths 4, '%1 and
{2 for some beam sections which have been subjected to labora-
tory tests [11]}, [12], [13], and for a few other common beam
sections., From these beams the 8 WF 40 section has been chosen
for detailed discussion because it has a large value of the
ratios Mp/Mpw and bl/b. The cross-section dimensions are given
in Table 1. We compute three examples, choosing the length of
the beam so that one example is provided for each part of the
analysise

In the first example we consider the shortest possiblie

8 WF 40 beam in which the second plastic region does not appear,

Table 1 gives 4,/c = 21.1, and we therefore take 4/c

21,1 for
the first example, The estimate for the limit lcad in this case
is given by equation (10) as PI%/Mp = 00,9895, The beam contains
the zones BC, CF and FH where x./c = 20,48, (Eq. 6), and
xp/c = 19,02, (Eq. 8). The elastic-plastic interface is computed
in the zones BC and CF according to equations (5) and (7)., The
results are shown in Table 2 and in Fig. 12,

In the sccond example we choose the length 4/c¢ so that
%l/c <A < &2/0. We take 4/c¢ = 12,5356, (The actual choice
was to make ug/c = 0,85 exactly.,) The estimate for the limit
load is given by equation (10) as Pl&/Mp = 0,9715, The beam is

divided into the zones BC, CD, DE, EF and FH according to Fig. 7.



411-107 34

The elastic-plastic interface in zone BC is given by equation
(5). The results are shown in Table 3, Equation (6) gives

xc/c = 12,3942, The cross-sections xD/c and xE/c are determined
from uD/c and uE/c in the following way., Equation (12) deter-~

mines approximately
u /e -1 = 0.001765 uy/c - 1 £ 0,129,
Using equation (11) we obtain the more accurate valiues

uD/c -1 =0,001753 uE/c - 1 = 0.,14256,

Equation (7) then gives
xD/c = 12,3921; xE/c = 11,6367,
Cross-section F is determined by equation (8) as
xF/c = 11,5074,

The zones CD gnd EF become so narrow that the boundary values

of u/c are sufficient to determine the elastic-plastic interface

in these zones., We therefore now focus our attention on zone DE.
In order to construct a solution in zone DE we need to

determine the function f(x). This is restricted only by the

boundary conditions, which are

{1

£(12,3921c) = 0,05917; f1(12,3921lc) = - 14,881/c (22a)

£(11,6367¢c)

0. 5C488 £1(11.6367¢c)

~ 0.17083/c (23a)

and
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l2.392lc
sin £ dx = 0.34083c, (24a)
J
11.6367¢

We must therefore choose a certain form of the function f(x),
this choice containing five arbitrary constants so that the
above conditions can be satisfied. Note that even if the above
conditions are satisfied the choice of f(x) may not be satis-
factory que to the fact that the results may not agree with the
general type of solution assumed in Fig. 7. E.g., the function
v(x) may become parallel at a point with the z-axis or it may
become larger than c¢ at some point, Both cases must be avoided.
For the choice of f(x) in this case we notice that f‘(xD) is
numerically large. This can be taken account of conveniently
by choosing the f(x) basically as a parabola with the axis
parallel to the x-axis and the vertex near Zpe This suggests
the introduction of the new variable y and also of the square
root as follows:

y = 12,3921 + k =~ %
and f(y) =A+BJy + Cy + Dy~ .

The five ccnstants k, A, B, C and D are to be determined. The

conditions become now
£{k) = 0.05917; £i(k) = 14,881

f(k + 0.7554) = 0,504885 fi(k + 0.7554%) = 0,17083

and

AWy

8t
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k+9¢7554
i sin f dy = 0,34083,
Jk
Prime denotes differentiation with respect tc y. These con-

ditions give
k = 0,0054; A = - 0,1180; B = 2.,6378;
C = - 3,0663; D= 1,134k,

The function f is shown in Fig. 13. FEquations (16), (18) and
(19) determine u, ¢ and g; see Table 4, The plastic regions are
shown in Fig. 1llb,

As the third example consider the shortest possible
length for which the previous analysis applies, 1l.e.,
e =4 /c

this case as compared to the loregoing example., The presenta-

10,53492, Very similar considerations apply in

tion 1is therefore shortened, We have the zones CD, DF, FG and

GH as in Fig. 8. 1In this case equation (10) gives Pl£/Mp = 049605,

Equation (12) givecs uD/c -1 =0,00119 and from equation (11)

uD/c -1

and XG/C 9.29002, Conditions (22), (32) and (33) are:
£(10.53385¢c) = 0,04865;  £'(10,53385¢) = - 22,011/c (22Db)
f'(xF) = - 0.33445/¢ (32b)

£(9.29002¢) = 0,60659; £1(9.,29002¢) = - 0,15514/c. (33b)

Conditions (24) and (28) give

0.,001185., Equations (7) and (26) give Xp/c = 10.53385
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10.5%3850
sin f dx = 0,68354 (24b) + (28b)
9.29002¢
%F
sin f dx = 2,9898 [cos f(xF) - 0,77136]. (28Db)
9.29002¢

In this example the cross-section F is arbitrarily chosen, We
take xp = 9.5,

In zone FG we let

£ = 0,60659 - 0.1551ky + Ay> + By
where
y = x/¢c - 9,29002,

The conditions (33b) are satisfied while A and B are
determined by (28b) and (32b). The constants become A = L4,1964
and B = - 14,679, The eguations (18), (27) and (29) determine
¢, h and g in zone FG, see Table 5,

In zone DF we nave the following conditions on f(x)
£(10,53385¢c) = 0.04865;  £!'(10.,53385¢c) = - 22,011/c

£(9.5¢) = 0.62314; £1(9.5¢) = - 0,33448/c
and
10,?33850
% sin £ dx = 0,56189c,
u9.50¢c
Now choose
f =A+B Vy+Cy + Dy6

where
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y = 10,53385 + k -~ x/c.

The above five conditions determine k = 0.00171, A = - 0,02903,
B = 1.93656, C = - 1.40448 and D = 0,11020, Equations (16),
(18) and (19) determine u, ¢ and g in zone DF, see Table 6.

The function f and the plastic regions for this third example

are shown in Figs., 15 and 16,

D. A second example of an approximate statically admissible

stress field.

The results of the previous analysis in this paper show

that for beams that have a length ratio greater than 4_/c the
reduction of the limit moment is at most of order 10%., Ex-
amples of these reductions are given in Table 1 in the column
that shows the value of Plx/Mp for beams having the length ratio
Lo/c. The cases where shear stresses become important therefore
are expected to occur for beams that have length shorter than
{5+ A considerable reduction in the maximum end load of a
built-in I-beam may take place when the beam becomes so short
that the shcsr capacity of the web is not sufficient to balance
the longitudinal force in the flanges, A failure, as cepicted
in Fig. 17, may then happen. As cross-sections no longer re-
main plane and normal to the center-line we can assume that the
web carries a small amount of the longitudinal stresses so that
in the web the shear stresses nearly reach their yield-value,

We shall now construct a statically admissible stress field for
this case -- starting with the same assumptions as before --

where this stress field is bascd on the failure of the web in

S
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pure shear, As depicted in Fig. 18 let the stress field be

composed as fcllows:

— e R N
ox = O; TXZ -vf§ in the web
3 bx¥ TSR o in the flange,

2 _\/3- b, (a - o 20 V3 by(a - c)

The equilibrium condition (1) is satisfied everywhere and the
yield condition (2) is obviously satisfied in the web, At the
flange-web junction the shear stresses are in equilibrium in the
same sensc as before, and the longitudinal stresses are discon-
tinuous, Such a discontinuity 1is permissible in the construction
of a statically admissible stress field, see [14], This stress
field is valid when the yield cocndition (?) 1s not violated in

the flanges. The yield condition in the flange takes the form

= s P i 2
ll = bx = % 3\ b{a - 2z) .! <1
RGN /3 bita - o) ]

|
J
The left-hand side has its maximum value at x = 4 and z = c.

The yield condition will therefore be satisried for beams having

a length 4 < %3 where 4. is obtained from the following equa-

&)

tion:

I 2 .

I 3 1 + _b ; = 1

i\/g bl(a = C)J "\/3 b:_L_;
or

- ; 2
X3/ =3 (ase - l)\__\/(bl/b) -~ 1. (34)

This length is computed and shown in Table 1, The estimate of

the maximum total shear force, P,, becomes in this case
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P, = 2be ;é + (a - ¢)b %é = ég (a + c)bY,.
/3 v3i V3
Therefore

P4 M

2 1

= = = (a/c + 1) 4/c B4 (35)

I\’I [} \
b V3 M

P

The above stress field suggests a more general field as

depicted in Fig. 1%, Ve let

o, = Ky % ¥ T, =k a ; Z 'y in the flange
b
o, = kp % Yy Ty, = kp & ; 2 Y + Kk 7% (% - 1)Y in the web.,

We assume that the two constants kl and k2 are non-negative. The
equilibrium condition (1) is satisfied everywhere in the same
sense as before, The yleld condition must be checked in the
flange and the web., Wec let k1 and k2 be so determined that the
yield condition is simultaneously satisfied at the most critical
points both in the flange and in the web., In the flange this
point is x = £ and 2 = ¢, The [ollowing equation thereforec
determines klz

(kg 4/e)2 + 3 [Kp(ase - 1P =1

o= L
1 2 2
J(i/e)® + 3(a/e - 1)

In the web the critical point is x = £ and z = 0, We thercfore

choose k2 sc that

(kg«"/c)2 + 3k, + kqby/b(a/c - DA |

k. e
=== Vi2 + B - A
1
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where
A =3 by/b —BLC = al
(¥e) +3
L wer? - 3G/ - 1Py - 1]

2 [ ]
(&/c)” + 3
The condition k; > O 1s satisfied but the condition kK, 2 C shows
that B > O, and this restricts the length of the beam., This

restriction is

Ve > /3 (ale - 1)\ (/0)° - 1 = dy/e. (36)

This stress field togecther with the previous one therefore

applies to any leingth of the beam. The tctal shear force now

becomes

P, = kl(a/c = 1)(a - c)blY + 2k1(a/c - l)blcY + kobcY,

Therefore
P2L

Mw L 2 1
= = El;l! = {kl[(a/c) - DIby /b 4k s (37)

p
Within our assumptions equations (35) and (37) provide a lower
bound for the limit load, The curve of P2L/Mp versus 4/c has
been computed for the 8 WF 40 section. The result is shown in
Table 7 and in Fig. 21.

In this stress field the assumption that S, vanishes 1is
strictly valid. This is true because the shear stresses are
independent of X so that the equilibrium equation involving S,
is identically satisfied, The stress fields that we have con-

structed give a lower bound for the collapse load, In the next

ot
=

-
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section we shall obtain an uppor bound which will be applicable

for short beams,

E. 2 kinematically admissible velocity field for short beams.

We shall now make use of the second limit analysis
theorem of Drucker, Prager and Greenberg [1}], which states

that a load obtained in a definite manner from a kinematically

admissible velocity field is an upper bound for the collapse
load. A velocity field is defined as kinematically admissible
when it satisfies the imposed velocity conditions at the bound-
ary of the body and when the velocities vanish on those parts
of the boundary where the surface tractions are not prescribed.
In this paper we consider only velocity fields which are con-

tinuous and satisfy the condition of incompressibility

(03]

_Q+Ql+§ﬂ:0
X oy 0z

where u, v and w are the velocity components in the x,y and 2
directions, The upper bound P* of the load is obtained by
equating the rate of work produced by the applied forces to the
rate of plastic work in the body.,.

It seems intuitively likely that a reasonable ugper
bound of the collapse load should be such that the value
P*&/Mp = 1 1is exceeded by only a small amount, if at all., For
moderately long I-beams we have only been atle to construct

velocity fields that give P® /M considerably larger than unity.

p
We therefore confine attention to short beams where a "good"

velocity field is easily obtained and restrict ourselves to the

¥k

| R
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length of the beams so that P*%/Mp.g l., The velocity field
that is chosen is depicted in Fig. 20, It is symmeiric with
respect to the midcle surface OFG, Part ABFG is rigid and
fixed. The part BCDE of the flange is rigid and rotates with
the angular velocity w about the fixed point B. In part ABC
of the flange let

us=w=~ %u}(f,- X - a+ 2); v = 0,

This is a motion parallel to AB, with velocities continuous on

AB and BC, In part BEOF of the web let
u=v=0; w=e-w(dex-a+c),

The velocity is continuous on BE and the motion is parallel to

BF. As before we use the von Mises yleld condition and there-

fore also the von Mises flow rule, We have constructed a plane
velocity field. The rate of plastic work, wp, for such fields

is derived in [5], page 214,

W =
P

L\éli“

i

iPdV

i) .

where dV is the volume element and I’ is given by

r= [(ax = 35 (5% i %ﬁ) ] $

We obtain both in ABC and BEOF

D =,

The rate of plastic work therefore is

_ 2
L% = YulVype * Vpgor)

s9b

e
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= 2 .
W= = Mpww[bl/b(a/c - 1) + 4/c -~ a/c + 1],

P s

The rate of external work is we

W, = P*w(f - a + ¢).

The 1limlt analysis theorem therefore gives the following upper
tound for the limit moment
M_ 4 ib,/bla/e - 1)°
P, _ 2 _pw" |21 '

== ) + 1% (38)
M, T3 HpE \We - ase + 1 J =

P*X/Mp becomes unity for

/e /42

= A + \/A - B
where
s 2

a=p V3 Mg/M_ - 20y /b (a/e - 1)° + 2(a/c = 1))
and
B=Y3 M /M (a/c - 1),

D pw

This upper bound, computed for the 8 WF 4O section, is shown in
Table 7 and plotted in Fig. 21 as a function of 4/c, It is seen
that the curve for the upper bound load P* lies parallel to
and only slightly higher than that for the lower bound load Pp

corresponding to shear failure in the weba

F. On _the relations between experiments and theory.

The example of the curve P24’,/Mp versus {/c¢ in Fig, 21
clearly shcws that the theory predicts a certain length ratio
of the becam bhelow which the load carrying capacity of the beam
decreases abruptly, because of shear failure of the web, This

critical length ratio is €3/c. In the following comparison we

£ =
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therefore look tirst for the appearance of such a critical
length ratio in the experiments, and, when observed, we compare
the values of the experimecntal and the theoretical length ratios.

Secondly we want obviously to compare the experimental
and theoretical values of the 1limit moment in each case, The
theoretical values are given by equations (35), (37) (which
furnish lower bounds) and (38) (which gives an upper bound,
valid for short beams). In the following experimentai data from
three sources are considered. TIn the paper by Johnston, Yang
and Beedle [13] sheer failures in the web of I-beams are re-
ported, but cetails concerning the length ratios and limit
moment values are not given. Baker and Roderick [11] made an
investigation of the influence of shear on the limit moment of
a particular beam section and presented the results in the form
of load-deflection curves from which the variation of limit
moment with longth retio cans be studied., Hendry [12] has dis-
cussed tests on a series of beams of different cross-scctions
and gives the results in a table where the limit momecnt was
defined by deflection considerations, Adopting his cdefinition
of limit moment comparsions are made in this section between
the experimental results and the theoretical predictions both
as to critical length ratio and magnitude of limit moment,

In the eighth Progress Report from Lehigh University
[13] two examples of beams are shown where the collapse of the
beams was apparently caused by shcar failure in the web. The
first example is a 4 I 7.7 beam that is simply supported and

loaded symmetrically by two concentrated forces, Each end of

-

Bt
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the beam can therefore be represented by the cantilever problem

discussed in this paper. The length ratio f/c¢ in the test 1s

approximately 2.5. In the theory equation (34) gives &3/0 = 2,5,

as shown in Table 1,

In the second example an 8 WF 40 beam is loaded so that
moments numerically equal but orposite in sense act at the ends
of the half-beam, whose length ratio was approximately 16,
Because of the symmetrical properties of the load each quarter
of the span can be represented by the cantilever beam, The
effective length ratio therefore is £/c = 8, For this case we
compute {3/c = 6405

The ratio between thc collapse moment and the fully
plastic mement is not stated for these two examples, The tests
show that shear failure in the web is important for beams hav-
ing the above cross-sections and the effective length ratio
approximately.&3/c.

Simply supported beams acted upon by two concentrated
loads, symmetrically spaced, have been investigated and re-
ported by Baker and Roderick [11]. The beam is a British H-
section with dimensions 14" x 14", The distance between the
loads was kept constant and the span was varied, Different
effective length ratios of the corresponding cantilever beam
problem were therefore obtained, varying from 9.4 (Test No. SR

21l) to 2.2 (Test No. SR 11). The value of £./c is 6.,7. The

3

load-deflection curves are given., For length ratios greater
than 3.9 the curves show a well defined "bend" where the slope

of the curve rapicdly decreases, The load at these "bends" is

2t
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taken as the collapse load in Table 8 and Fig. 22. The table
and the figure show that in the experiment when the length ratio
is smaller than 5.5 the collapse moment decreases rapldly with
further decrease in length ratio. In the theory we have

£3/c = 6,7 below which Pgbm£ decreases rapidly.

In the paper by Hendry [L2] the influence of shear
forces in simply supported beams of various I-sections is dis~
cusced., In these tests a concentrated load acts on the mid-
point of the beam. A series of tests is also included in which
the influence of shear stresses in the beam of a portal is
investigated, The value of M/Mp 1s tabulated in the paper,
where the moment M is obtained from the load at which the
deflection of the beam equals 1/50 of the span., These values W
are shown in Table 9 and Figs. 23 and 24 together with the
theorctical values of P&/Mp. Except for the portals and the
beam 3b we see that M/Mp is in the neighborhood of and is great-
er than P2£/Mp. We notice moreover that for length ratios
shorter than {B/C the value M/Mp is considcrably less than
unity.

The portals Bl - BS5 are made np of a 3" x 1" beam and
of 13" x 1" stanchions. The ratio of the fully plastic moment
of the beam to that of the stanchion 1s approximately 7.3 to l.
The effective length ratio 4/c is therefore taken to be
77.-%-1-}1- (A/e)* = 0,88 (U/c)* whore (4/c)* is the length ratio
between thc load and the end ol the bcam, The results in Table

9 show that the portals did not develop the moment P2£/Mp.

e gyn
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In [12] the large reduction of the limit moment is explained
by the influence of the axial stresses in the columns,

In gereral we see that the theory and experimental
tests agree rather well, with very few exceptions, For this
comparison between the experiments and the theory we have used
the results obtained by the second type of stress fields This
is done because the length ratio is in these cases so short that

the first type of stress field does not apply.

G, Summary and conclusions.,

The two types of stress field in this paper each give
an approximate lower bound for the true collapse load of the
plastic bending of a cantilever I-beam., The approximations
consist in both cases of a two-dimensional formulation of the
problem while in the first type of stress field the further
assumption 1s made that the S, stress 1s negligible, The veloc-
ity field, which is applied for short beams, gives results
which are upper bounds to the true collapse load. The velocity
field satisfies «ull the requirements of the appropriate theorem
of 1limit analysise. The upper and lower bounds differ by small
amounts for short bcams. For long beams the lower bounds fur-
nished by both types of stress field tend toward the result
P%/Mp = 1.

The ratio P22/Mp, vhere P, is the lower bound on the
collapse load defined in Scction D, can be used to estimate
the limit moment M, = P2£ in the relation tc the fully plasitc

monent Mp which is appropriate for pure bending (or very long
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cantilevers). We note that the curve of P2£/Mp as function of
4/c has two distinct parts, as exemplified by the curves of
Figs. 21 - 24, For ¥/c £ 33/0 it is a straight line through

the origin with the slope ~2/¢ & 1_ . For 4/c >.%3/c the value
V3 Mp/M =

of P24’,/Mp increases asymptotically to the value P2&/Mp = 1,
The reduction of the limit moment at the length ratio £3/c may
be as high as 30% for thc beams mentioned in Table 1. The
curves show that a much larger reduction of the limit moment
takes place when the length ratio is less than £3/c, but tor
beams having a length ratio greater than &3/0 the fully plastie
moment 1s generally reduced by a relatively small amount, Table
1 also shows that the value of %3/0 in some cases is so short
that in the practical problem the effects of the details of the
end constraint or of the loading are very important. It is
therefore suggested that beams should not be used whose length
ratio is smaller than £3/c or which are so short that the end
effects are important, For example, 1f L/c < 6 treatment as a
"beam" in the conventional sense is hardly appropriate,

The influence of buckling, particularly cf the wed or
the flange, (or both), is disregarded in this paper. Thils may
be important for certain short beams, as indicated in [13],

and should be further investigated,

<
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T | 1
21,1 l21 o 20,9 20.48

| x/c fzo 8 l20.7 [20.6 [20.5 }
u/ c! 0. 515| 0, 619I 0. 709; 0.788; C.860| 0,927 0.989| 1,001 !
R N SR 1
: | : i :
x/c 20,4 120,2 120.0 (19.8 [19.6 (19.h '19.2 119.02

!
| N ! i | !
u/Ci 1.027} 1,059 1,082{ 1,100; 1.116 ....171 1, 1“5‘ 1, 156|

‘ ! ! |

él\ L I ‘ l | !

Table 2, The function u/c¢ for

8 WF 40 section:® /e = 21,1
T T o
i x/c 12,5356 | 12.5 12,45 i 12.394%2 |

!

fu/e | 0.85 0.8901 | 0.9436 | 1,0000 i
|
l i

Table 3, The function u/c in zone BC for

8_WF 40 sectiongd/c = 12,5356




A11-107 54

' T ! ! 7~
x/c v f L ou/e L 9 igle g/c./1+2sin"f

]

i
: é ! |
12,3921  0,003% | 0,05917 ; 1,00175, 5.9° {0.0000 |0,0000
; H o
12,3875 : 0,01 | 0.1150% | 1,0036 | 11,3° {0,001l 10,0011

) ¢ |

12,3775 0.02 0.13390 | 1.0056 18.8% 10,0079 |0.0082

12,3675 0.03 0.,24759 | 1,0072 | 23,6° :0,0166 |0,0176
12,3575 « 0.0% | 0,28835 | 1.0087 | 27,2° :0.0250 | 0.,0270
12,3475 ' 0,05 | 0,3209% | 1,0101 0

0,0344 | 0,0377

12,3275 : 0,07 | 0.37032 { 1,0128 | 33,9° 10,0497 | 0.0573
: ; !

12,2975 - 0.1 0.42025 | 1,0169 | 38.5° 0.0666 '0,0769

12,2475 , 0,15 | C.46845 | 1,0241 | 41,20 0,081% ' 0.0966

T - :
12,1975 1 0,2 0.49291 ' 1.0319 | 42,9° ;0,0852 | 0,1025

. . !
12,0975 0.3 |0.50793 1.0500 ! W44,00 |o.o7uu 10,0903
11.9975 0.4 0.50408 1,0711 | L3.7° 0.0536 | 0,0649

| i |
11,8975 0.5 0.49631 i 1,0940  43,2° 10,0317 : 0,0383
11,7975 0.6 10.49235 1 1,11€3 | 42,9° 10,0139 10,0167

| . : ,
11,6975 '0.7 1 0.49679 | 1,1347 1 43,2° ;0,0031 | 0,0038

<4

f [ '
11,6367 10,7608 + 0,50488 * 1,1426

1 A

|

43,79 ;0.,0000 | 0,0000

— -

Table 4, The functions f, u/c, @ and g/c in zone DE

for 8 WF 40 sectiong 4/c = 12,5356
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| | Tooeie?s
x/c L y 5 ‘ h P g/c g/c§/1+231n £
| ‘ !
942900 | 0 0.60659 lo.9u976 50420 |0 0
9.,3400 20.65 | 0.607149 :0.95982 50,3° io.oos7 0.0073
9.3900 | 0.1 | 0,61836 30,97569 51.0° 10,0167 0.0216
9.4400 10,15 | 0.62820 10.99119 | 51.5° 10,0268 0.0349
9.4900 20.2 0.62599 !0.99972 P 51,40 20.0307 0.0399
i | !
9.50 10,2100 | 0.6231% !1,00000 151.20 | 0.0301 0.0390
Table 5, The functions f. h, o and eg/¢c in zone FG

for 8 WP 40 section: 4/c = 10,53492

/¢ 26

!
]
|
|

2l [ 22
|
I

PA/M 10,993
p!

i
Pg%/Mp%o.995

0.992 0,990

0.99%10.993

0.988 10.986,0,982

0.99150.989 0.986{0,982

0.977 i

/¢ 1 10

i

95 @

|
1
I
B |
|
!

5097 5| b

+

Pzﬂ/Mp 0,964

P%&/Mp! L

0.95550.9u2
i
S

0.922{0,8081

=t !00892
f

0.737

0.76010. 624
)

0.590! 0,42

|
|

|

0. 448

Table 7.

The values of P.4/M ,
17D

Pg&/Mp and P*&/Mp for 8 WF 40 section

i
e
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x/c y ? f u/c i P g/c g/c\/1 + 23in2f
10. 53385 10,00171 ; o 04865 11,00128| 4,8°10,0000 0.0000
10.52556 {0,01 O l<059!1 00391 1Y, 70 0.0027 0.0027
10.51556 0,02 10,216 ; 1005%7,20,9° 10,0086 0,0090

| n : !

1 . ! g T y
10.50556;0.03 ;0.26u27§1.00761 25,1°10,0159 ! 0,0169
10,%9556 {0, Ok !o.3021051.oo905 28,40 '0.0236 } 0,0256
10.48556{0.05 Ifo,~33378§1.01o38;3_1.,oolo 0316 | 0.0348

] ! ! ;
10.46556 0,07 20.3850451.01283i35.1030.0475 i 0.,0538
10.4355610.10  0.4429211.01626;39,4°'0,0698 j 0.0817

! i
10.40556%0.13 1048664 !1.01956 42.5°io.0892 } 0.1069

] ; j !

! | f ]

10437556 0,16 io.52087 1.02282{44,80/0.,1051 | 0.128k4
10.33556 0,20 20.55613;1.02718 47.1%10.1211 | 0.1511
10.28556!0.25 10,58816(1.03278 49,10!0.1341 i 0.1705
i L
10.2355610.30 Eo.élouo 1.03865!50,5° 10,1409 0.,1814
10.1855610.35 §0.62529.1.0h488:51.3050-1“26 ! 0.1851
i i | i
10,13556 0,40 fo.634u3 1.05153151,5° , 0.1400 0.2627
d ]
! i | ‘
10.03556!10450  1046398111.066%0'52,2° 10,1250 % 0.1636
9.93556/0.60  |0.63348/1.08367|51,8° 10,1010 | 0.1317
’ t
9.8355610.70 | 6°103(1 193131 51 1 0070} ; 0.0912
! ]
|
94735560480 90:3° !o 0468 ; 0.0602
9,63556{0,90 0.60268§l.14346|50.0020 0284 é 0.,0364
! i
9.53556,1.00 0.61325!1.15507,50.6C’ 10,0257 0,033
l |
9. 50000 1.03556 0 62314 1415606514 2C>io 0309 { 0., 0400
Table 6, The uncblons f, u/c, ¢ and g/c Tn zone DF

for 8 WF‘hO SGCthP 1/c = 10,53492
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| | '
?est No. i 2 /e ; 2w | W/c 92%/Mp i P*%/Mp
SR 21 .25 e i 2.05  9.68 | 0,918 ? > 1
20 1 3.75 18,33 | 2,30 9.58 oo |51
19 ? 3025 o 7422 j 2,65 | 9.57 | 0.861 é 0.949
22 ; 3.00 | 6.67 E 2,85 , 9.50 ! 0.857 é 0.891
17 § 2.95 6,11 | 3.05 : 9,32 | 0.785 | 0.831
16 2,50 !5.56 | 3,30 9.17 | 0.715 | 0.773
15 | 2,25 | 5.00 § 3,15 | 7.88 { 0,643 : 0.715
10 E 2,00 | L.Lk § 3.5 | 6.99 | 0.571 | 0,65
1% 1.75 | 3.89 ? 3,30 1 6,52 0,500 | 0,600
' : | ' -; '5
Table 8. The tests by Baker and Roderick

i
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T ' ) 1
Beam No, E Section i& g &/c% Pg%/Mpi P*%/Mp M/Mp
la 15 ! 9.1 0,973 s 0.95
b & B x 3" BR.S.J. 212 | 7.3}30,953 % > 1 5 3:00
¢ /e = k5 9 i 5.5% 0.909 | > 1 | 1,00
a 6 1 3.6 0,684  0.719 ' 0.83
e 45! 2,710,511 1 0,565 ' 0.7
2a 512 i 9.6% 0.979 ' > 1 % 1.00
b L3 e PR Sl % 7.5: 6.0é C.941 i > 1 j 0,97
. iy/0 = 3.2 5 %o 0.869 ‘ 0.995  0.88
d % 3 ; 2,4 0,598 | 0.626 1 0.59
3a i 3" x 1" R.S.J. f 9 i ?.ai C.967 % >1 ; 0.96
b ’ Ly/e = 2.1 g 3.21 0847~ >1 - 0.73
. T G

e {10 é 7.02 0.966 = >1 ; 1,00
a3 x1vI 7 i u.9i 0.929 | >1 | 0,87
e dg/e=21 155 3.9(0.839 0 >1 | 0.86
£ ! Portals Loy ; 2.8 %o.81h ; 0.98 i 0.61
g Bl - BS ; b 2.8; C.81L4 E 0.98 ﬁ 0,76
4a flo i26 50.993 sl E 1500
b 1T )5 10 10,975 '>1 ; 1,00
c %3/c = 3.4 ; 3 E 6 10.934 ; > 1 i 0,97
a ; 1.5 3 ;Lo.709 oM | 0,76

Table 9,

The tests bv Hendry
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Fig 10 The stresses at g cross-seciion in DE
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Fig.1l The stresses at a cross-section in FG
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